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The fundamental concepts of the optimality criteria method of structural optimization are

presented. The effect of the separability properties of the objective and constraint functions on the

optimality criteria expressions is emphasized. The single constraint case is treated first followed by the

multiple constraint case with a more complex evaluation of the Lagrange multipliers. Examples

illustrate the efficiency of the method.

INTRODUCTION

The primary objective of this introductory discussion is to place the Optimality Criteria concepts

in a proper framework relative to nonlinear mathematical programming and to dispel the often-stated

erroneous characterization that these concepts lead to approximate optima. There are two major classes

of approaches that have been vigorously developed for application in structural optimization. These are

somewhat misleadingly referred to as Nonlinear Mathematical Programming (MP) and Optimality

Criteria (OC) methods. The former seeks to improve the design at each iteration based on local informa-

tion about the design space, thus directly optimizing the objective function. The latter seeks to satisfy

the stated or derived optimality criteria, thus indirectly optimizing the objective function. Direct and

indirect methods of nonlinear mathematical programming would be the correct and more informative

designations. However, in this paper the abbreviations MP and OC are used, even though they are more
traditional than correct designations.

The intent of the sections that follow is to introduce the fundamental concepts of what became

known as Discretized Optimality Criteria (DOC) approaches to structural optimization. These methods

consist of an intuitively stated or exact, mathematically derived optimality condition or criterion and an

algorithm that satisfies it. The advantage of DOC methods is that they provide superior computational
economy even when they are used with detailed mathematical models with thousands of finite elements.

Such a capability makes the investigation of alternate structural concepts and layouts computationally
affordable.

It is worth mentioning that, although in principle the derived optimality criteria methods have

general validity, the most successful implementations have been those that take advantage of the favor-

able mathematical properties of certain classes of constraints and of favorable structural behavior

characteristics. DOC methods have been successfully applied to practical problems with thousands of

independent size variables. MP methods have general applicability, but the price of their generality is

their limitation to a few hundred design variables because of the rapidly increasing computational burden

as the number of design variables increases. Hybrid capabilities that utilize the advantages of both

approaches have yet to be developed.

Perhaps the simplest way to point out the difference between MP and DOC approaches to optimi-

zation is to consider the two ways that structural analysis problems can be solved by the Principle of the



Minimumof the Total Potential. In this case a displacement state is sought for a structure that

minimizes the total potential relative to all admissible displacement states in order to satisfy the
equations of equilibrium.

The first and customary approach is to develop the optimality conditions, in this case the equa-
tions of equilibrium in terms of the displacement variables. The equations are obtained by variational

methods if the structure is considered a continuum or by differentiation relative to discretized displace-
ment variables ill the case of discrete or discretized structures, such as finite element models. The total

potential is then indirectly minimized by the solution of the resulting differential or algebraic equations,
respectively. This approach is similar to DOC.

An alternate method is, at least in the discretized case, to apply any of the many available MP
methods to directly minimize the total potential relative to the discrete deflection variables. As a

minimum is reached by this rarely used direct minimization approach, the same vector of displacement
variables is obtained as is by the more customary indirect (i.e,i DOC) method, in this sense finite ele-

ment methods, for example, can be viewed as DOC methods, even if the principal interest= is in viewing
the results as the solution to an analysis rather than as the solution to an equivalent optimization
problem.

In the case of structural optimization, there are two classes of DOC statements, intuitive and

derivable. The venerable and powerful Fully Stressed Design (FSD) approach is usually viewed as an

intuitive statement, but under certain conditions that are met by most practical structures, it actually
provides the exact optimum. Its success served as both the motivation and model to also develop DOC
methods for frequently considered stiffness constraints. Because of the mathematical structure of the

stiffness constraints, it was possible to derive exact DOC statements. Currently, the 6riglnal DOC

method--that is, the FSD for the stress constraint case--is considered approximate and the stiffness
DOC methods exact. This mixed view has led to the often stated, mistaken characterization of DOC

methods as approximate.

Tile early advancements in derivable optimality criteria methods by Prager and coworkers were

directed toward special continuum problems (refs. 1 to 4). The results showed the elegance and the

combined power of variational calculus and structural energy theorems in structural optimization prob-
lems. The resulting optimality conditions were differential equations, and their solutions defined the
optimum structure.

The original development (refs. 5 and 6) of derivable DOC methods for structural optimization

problems was consequently approached from a combination of three different directions: (1) engineering
considerations of structural behavior, (2) motivation for similarity with the FSD approach in simplicity

and computational economy, and (3) utilization of Lagrange multiplier methods of constrained optimi-

zation to discretize the continuum approach of the Prager school. In the discussion that follows, these

motivations are considered with an engineering emphasis much along the lines of the historical develop-
ment of DOC methods.

FULLY STRESSED DESIGN AS MOTIVATION FOR DISCRETIZED
OPTIMALITY CRITERIA METHODS

The intuition of a structural engineer is to strengthen a component if analysis shows it to be too

weak and weaken it if it is shown to be too strong. If every member is finally at its proper strength for
all load conditions after repeated resizing and analysis, the structure is accepted as optimum for the



purpose.As soon as computers became available, this fundamental attitude was formalized for computer

implementation as the well-known FSD. As a brief definition we can say that in an FSD every structural

member is either at its maximum allowable stress or is at a passive (minimum or maximum) size. In the

case of statically determinate structures, only one FSD sizing iteration is needed, because the internal

forces Si do not change on the right side of a sizing formula, indicated in a general sense by

xi > fi(s ,oio) (1)

Here x i is the needed cross-sectional property, such as area or section modulus, and aio is the
stress allowable in the ith member. As is well known, if the structure is statically indeterminate, then the

(generalized) internal member forces Si are functions of the chosen cross-sectional properties, and equa-

tion (1) becomes nonlinear. The success of FSD in a given case depends on the sensitivity of Si to
changes in the cross-sectional properties and, of course, on whether the optimum is all FSD or not.

In most practical structures, such as a wing box (which is essentially a cantilever beam), this sen-
sitivity is very tow regardless of the theoretical number of indeterminacy of the finite element model.

Equilibrium governs rather than compatibility. In such cases a few resizing iterations converge to the

final design even when there are thousands of independent size variables. If the sensitivity is high, as for
the popular 10-bar truss, more iterations are needed than for a large wing box model with its thousands

of size variables. The important point is that in case of sizing formulas similar to equation (1) the

needed number of iterations depends on structural behavior (a concept well understood by structural
engineers), and not on the number of size variables. Before we discuss the development of exact DOC

statements, a few remarks have to be made relative to FSD because of its importance in practice and
because of its role as motivation for derivable DOC methods.

STRESS CONSTRAINTS AND THE FULLY STRESSED DESIGN APPROACH

As is now well known, FSD is not a valid general statement of a necessary or sufficient condition

for optimality, because the optimum point in certain cases also can be a point where the constraint and
objective functions are tangential. For that to happen, the number of active constraints has to be less

than the number of size variables, in which case the design is not an FSD by definition.

When the FSD condition is satisfied exactly, the set of n active stress constraint equations com-

pletely defines the n member sizes. The objective function in that case plays no role at all. In terms of

the design space, it is a vortex point of the n stress constraint surfaces. This point, as a matter of fact,

usually is the theoretical optimum point for stress constraints for most practical large structures.

In some cases an FSD still can provide an acceptable practical approximation if the two kinds of

points are sufficiently close together. Of the two kinds of points, FSD can provide an acceptable solution

with excellent computational economy even for models with thousands of size variables. On the other

hand, the exact optimum in such cases requires the use of direct search procedures of nonlinear mathe-

matical programming methods that limit the number of size variables to a few hundred at best. To refer

to FSD strictly as an intuitive and approximate method is a somewhat fuzzy proposition.

It is widely known that for most practical structures of closely uniform material properties FSD is

the optimum. In addition, before judging FSD too harshly, one should remember that practically all

major structures--from bridges and high-rise buildings to ships and space shuttle wings--have been

designed essentially by manual or automated FSD procedures.



Underuniform materialproperties,FSDis equivalentto theexactoptimumthat canbederived
for the specialconstraintof limiting the externalworkof the actualloadsystem_alsoreferredto asthe
complianceconstraint. Thetheoreticaloptimumstructurefor sucha constraintis uniformlystrainedand
canbescaledto satisfyuniformstressconstraints,resultingin anFSDdesign.Suchadesignis also
equivalentto the uniformstrainenergydensitystatements.Theseconceptssimplify thestressconstraint
caseby convertingthe n stressconstraintsto a singleexternalworkconstraint. Onealsocanconvert
the n stressconstraintsto relativedisplacementconstraintsandobtain exactoptimality criteria for
stressconstraintsindirectly. For uniformstructural properties,all thesestatementsbecomeequivalent.
In caseof deviationsfrom uniformproperties,carehasto beexercisedin usingthesestatements.

Thecustomarystressratio resizingalgorithm that is usedto satisfyFSDalsohasa weakness.It
hasa tendencyto eliminatethe goodmembersthat havehigherallowablestresses.FSDmightbe the
optimumdesignin suchcases,but thestressratio algorithmdivergesfrom it. For fundamentallydis-
similarmaterials,suchascompositematerialsystems,the uncertaintiesassociatedwith the case-by-
casevalidity of anFSDor energy-density-basedapproachsuggestcaution.

Thepreviousdiscussionwasgivenmainly to clarify the exactor approximatenatureof DOC
methods.BecauseFSDis viewed,in general,simply asan intuitive DOC,oftenall DOCmethodsare
mistakenlytermedapproximate,asopposedto MP methodsthat are termedexactmethods.Sucha view
is obviouslyquite simplistic.

STRUCTURAL OPTIMIZATION AND SEPARABLE PROGRAMMING

Stressandstiffnessconstraintsconstitutetwo differentclassesof optimizationproblems.Themost
important mathematicaldifferenceis that stressconstraints,unlessexpressedasconstraintsonmember
deformations,donot leadto so-calledseparablemathematicalprogrammingproblems.Stiffness-related
constraints,on the otherhand,canbeeasilywritten in termsof equalityof internaland externalwork
quantities;andif statedthat way, theywill leadto separableprogrammingproblemsandto exact,yet
simple,DOCstatements.

The important consequence of such formulation of DOC methods is that the resulting optimality

criteria are both simple and exact, and not only for statically determinate problems but also for indeter-

minate problems. The fundamental concepts of DOC remain valid for nonseparable problems also; the
difference is in the evaluation of the necessary quantities, which involves sensitivity calculations that are

almost trivial for separable problems. Extensions to nonseparable problems are the subject of current

research. In either case the number of reanalyses, similarly to that for FSD_ is independent of the
number of size variables: it depends on the structural behavior. This very property, the number of

iterations being a function of structural behavior rather than of the number of size variables, is the
fundamental advantage of DOC methods,

For the programming problem to be separable, both the objective function W(X) and the con-

straint function C(X), where X -- (Xl,X2,...,Xn) , have to satisfy the following two separability conditions:

II n

W(X) = _ Wi(Xi) C(X) = E Ci(Xi) (2)
i=1 i=1



and

O2Wi(Xi) 02Ci(Xi)

0X i ¢_xj 0x i _xj

=0 (3)

that is,

O_(X) dci(xi)

Oxi dx i

The first condition states that the functions W(X) and C(X) can be written as a sum of terms,

each dependent explicitly only on a single variable. For all ci(xi) containing implicit dependence on all

xi, as for indeterminate structures, the second condition also must hold. These conditions, when satisfied
both by the objective and constraint functions, result in a separable programming problem and in simple

uncoupled and exact DOC statements that involve only the ith size variable. In the following sections,

methods are shown as to how to utilize such DOC expressions to derive recursion relationships, the hall-
mark of DOC methods.

DISCRETIZED OPTIMALITY CRITERIA FOR A SINGLE STIFFNESS CONSTRAINT

The case of a single constraint is not only convenient to use in discussing the fundamental ideas of
DOC methods, but it is also an important class of problems. Many times in practical cases there is a

single troublesome response behavior, such as a strength design obtained by FSD or other methods, which

is deficient in some stiffness-related behavior. As shown next, simple and powerful DOC approaches can
be derived to deal with such constraints.

The standard statement for our constrained optimization problem is to minimize

w(x) (4)
subject to

G(X)= c(x) - c* = o (5)

where

x = (xl,...,Xn) > o (6)

W(X) and C(X) axe required to satisfy the separability conditions. The functions ci(xi) represent the
internal energy contribution of the ith variable to satisfy the constraint C*, which is expressed as exter-

nal work, such as the external virtual work of a unit virtual force along the single displacement to be

constrained. This is a very important point because it is this formulation that leads to not just W(X)
but also G(X) to satisfy the separability conditions.



The first step is to form the Lagrangian as

L(X,_)
_wi(xi) -- _l _ci(xi) -- C* ]
i--1 i=l

Invoking the separability conditions, the optimality criteria become

0L(X,A) dwi(xi) Adci(xi)

0x i dx i dx i

(7)

or

(i = 1,...,n) (8)

dci(xi) .........

dxi 1 .. constant = change in performance (9)

dwi(x i) A change in cost

dx i

This optimality condition states thai at optimum-the "return on investment" is the same for all

variables. As mentioned earlier, this statement is valid also for the general case where W(X) and G(X)

do not satisfy the separability conditions. The difference is that potentially costly Sensitivity analyses
may have to be performed in the general case, whereas the special case leads to equation (9), which

involves only the uncoupled ith terms. .......................

At this point it should be mentioned that usually not all variables are free to change, and they get

separated into active and passive constraints in order to satisfy minimum or maximum size variables, or

because some structural members are to remain a certain size for practical reasons. For these discussions

it is assumed that the contribution of the passive variables is migrated into the value of C , modifying

its original value.

For specific cases of specialization of wi(xi) and ci(xi) , equation (8) or (9) can be solved for xi,
resulting in explicit formulas for the design variables that are similar to equation (1), our model formula.

Consider the specializations

Wi(Xi) = WiX i Ci(X i) = Ci

x i

which, for example, for truss members can be further specialized as

wi(xi) = LiPiAi wi = LiP i x i = A i

(10)

(11)



and

SP SV L i SP Sv L ii i i i
ci(xi) -- Ci =

EiA i Ei

(12)

In these expressions, Ai, Li, and Pi are the cross-sectional area, the length, and the specific weight of

the ith bar, respectively. S_- is the axial member force due to the actual load system P. If the con-

strained quantity C is the virtual work of a virtua! load system V along actual displacements, then

ci(xi) is the contribution of the ith member to the internal virtual work to equal C*, the constrained

svexternal virtual work. In that case is the axial member force due to the virtual load system V.

Examples of V are the unit dummy load at and along the constrained deflection, a unit couple to con-

trol twist, or P = V when the work of the actual load system P is being limited as the compliance
constraint mentioned earlier.

With the frequently valid specializations of equation (10), we can form the Lagrangian as

nwix/ ci/L(X,A) = + - C
i=1 i=1 xi

(13)

and obtain the optimality criteria as

0L(X,A)

0x i
=w i -- =0

2
X.

1

(i -- 1,...,n) (14)

that also can be written in the more useful forms,

[------1/2

,_ wi

old

(15)

or

new
x.

1
= A ci _[old

wixi]

(16)

Note that equation (15), in a way similar to FSD, provides the optimum design in a single itera-

tion as a direct formula. Equations (15) and (16) also can be written in a form that will be used in a

more general fashion to develop the recursion relations to satisfy these equations iteratively:

By multiplying equation (17) on both sides by x q and taking the qth root of both sides, one obtains the



fundamental DOC recursion relation:

c i
1 = A_ = D i (17)2

wix i

X i =

For q --- 2 and q -- l, equation (18) reduces to equations (16) and (17), respectively. The exponent q

is a step-size parameter that governs the modifying power of Di, a quantity that approaches unity as the
optimality criteria are becoming satisfied during iterations. The larger the exponent, the larger the modi-

fication initially, but it may result in numerical instability. A small exponent may result in a large num-

ber of iterations. It is often advantageous to provide an additional flexibility by multiplying 1/q at
each iteration by a number (1 + e) where e is a small positive or negative number depending on which

strategy is used (a larger or smaller initial exponent).

Equation (18) can be linearized by starting out with the following modification:

x i = x iD_/q --_ x i = x i(1 + Di - 1) l/q (19)

Considering that close to the optimum 1 >> (D i - 1) leads to the linearized expression

new _- 1 (20)
xi i 1 + _ (D i - 1

q

If equation (18) is written in terms of reciprocal variables and then similarly linearized and finally written
again in terms of the original variables, one obtains the expression

t[]I °ld
1

new : (21)
xi 1 (D i _ 1)

1-q

Equations (18), (20), and (21) are our three basic recursion relations, also referred to as the exponential,

the linearized, and the linearized reciprocal recursion relationships.

Lagrange Multiplier for a Single Constraint

When the optimality criteria are satisfied for a preselected choice of the single multiplier, one
obtains an optimum reIative distr_ution of t_hedes_gnvar_at)les, butone that yields a constraint Value

C(X) that is most likely different from C , the required value. For this case of a single constraint, the



designcan be simply scaled to satisfy the constraint equation, Equation (15) also can be substituted into

the constraint equation and solved for the multiplier, yielding a formula for it. There have been many

approaches proposed to update the multiplier during iterations to satisfy the constraint, but scaling is the

simplest in this case. The role of the multipliers becomes more important and more complex in the case

of multiple constraints.

In preparation for the multiple constraint case, two obvious ways to update the multiplier are pre-

sented here. They utilize the diminishing difference between the calculated value of C(X) and the
required value C to update the multiplier. The first method adds a modification to the current multi-

plier:

Anew=[A(1 +pG)] °ld G _ 0 as C -, C* (22)

As the constraint is satisfied, G (the value of the constraint function) vanishes, and the modifications
stop. It is interesting to note that, if an extended Lagrangian formulation would have been used by

adding the square of G(X) as a penalty term, equation (22) would have been obtained.

$

In the second method, the ratio of C and C , the current and the required values of the con-

straint, is utilized to modify the multiplier:

A new =A C (23)

This ratio approaches unity as C approaches C*. In both cases p is a step-size parameter to

control the rate of the modifications, with p = 2 being a good starting value and p = 1 being equiva-

lent to scaling. Again the modifying power is diminishing as the constraint is nearly satisfied, and the

multiplication of p by a factor (1 + e) at each iteration (as discussed earlier) can be advantageous.

Finite Element Formulations

Displacement constraints.--There are three cases of stiffness constraints that have been formulated

during the early developments of DOC (ref. 7). These approaches also pioneered the development of

what became known as sensitivity analysis. First, the approach is given in some detail for the case of

generalized displacement constraints given in terms of external virtual work. Consider the following
definitions:

C* VjP (sum on j)

K system stiffness matrix

P actual loads

r P system displacements due to actual loads P

9



rv system displacements due to virtual loads V

V virtual loads

Because of using values from solutions during the evaluations of Di, the following relations hold:

KrP = P Krv = V KirP = S.P Ki rV = S.V (24)
1 1

The Lagrangian takes the form

n

L(X,A) = _ wix i + A(rPKr V - C') (25)

i=l

and the optimality condition becomes

0L(X,._) = wi + )t Kr v
0x i +rP OK rV + rPK Or_iV.loxi

=0 (26)

The three terms in the parenthesis appear complicated, but they actually contain a very simple rela-

tionship. Utilizing the solution for the load system P, one can write in transposed form the following
relationships:

0rP o_rP
rPK = P -- K + rP __0K= 0 __ _- -r P __SKK-1

_i _i _i Oxi

Similarly for the virtual load system V, one obtains

(27)

Orv Orv
Kr v = V __0Krv + K __ = 0 __ = -K -IOK_ rv (28)

0x i 0x i 0x i 0x i

Substitution of equations (27) and (28) into equation (26) and performing the simplifications finally
yields

w i - A P __0Kr v 0 (29)
0xi _ - .... =

Note that separability was not assumed, but proven, because the first and last terms that contain

the implicit derivative terms have vanished. Furthermore, if we have linear dependence of the system

stiffness matrix on all xi, the following relation holds:

10



OK _- _1 Ki

o_xi x i
(3o)

yielding the simple expression for Di:

rP K i rV
1 = A =D i

wix i

(31)

Buckling and frequency constraints.--The derivations for D i for the case of buckling constraints
and vibration frequency constraints are very similar to the derivation discussed earlier for the displace-

ment constraint. The detailed derivations are given in reference 7. Here only the final expressions are

repeated:

yT Ki y
1 = A =D i

wix i

(32)

for the case of buckling constraints, and

yT Ki y _ w,2 yT mi y (33)I=A =D i
wix i

for the case of frequency constraints, where y is the associated eigenfunction and w* is the required

frequency. Equations (32) and (33) satisfy the optimality criteria. For the buckling case, they also

satisfy the constraint by scaling. For the case of vibration frequency control, the presence of nonstruc-

tural mass is usually required to effect a change in frequency, and constraint satisfaction in this case
requires special caution. Reference 8 points out possible difficulties and is suggested reading in this

respect.

Examples

Example 1: Forward-swept wing.--As stated earlier, the simple constraint case is often impor-

tant in practice when one particular response is not satisfied, for example, by a strength-based design.

Figure 1 shows the configuration of the X-29A forward-swept wing airplane, and figure 2 shows the model

used in the design studies with over 4000 finite elements. The FSD design of the composite wing was

deficient in divergence velocity, and a DOC method (ref. 9) was used to correct the deficiency. The
solutions converged typically in around half a dozen iterations for the few thousand design variables,

indicating the efficiency of the optimality criteria approach.

Example 2: Effect of the choice of step-size parameters.--Figure 3 shows a version of the classical

three-bar truss used here for illustration mostly because it produces a small data set that can be pre-

sented in its entirety (table I). The constraint is a 1-in. extension of bar 1, which is also equivalent to a
stress constraint and is always satisfied by scaling as indicated in table I by the constant value for stress.

11



Themerit functionwasartificially chosen to be W = 100A 1 + 10A2, resulting in the "design space"
given in figure 4.

Many experimental runs were made for this small problem to study convergence behavior for vari-

ous combinations of equations (18), (20), and (21) (sizing options 1, 2, and 3, respectively) and of the two

update formulas for the multiplier, equations (22) and (23) (_ options 1 and 2). All possible combina-

tions give a very similar performance of seven to eight iterations to four-figure convergence with default

values of Q = 1/q = 0.5 and p = 2. Convergence in four iterations was also obtained by starting with

slightly larger exponents (Q = 0.7; p = 2.2) and a moderate value of a = 1.02. The smoothest "tuned"

performance to four-digit accuracy was obtained in only two iterations by starting with relatively large

exponents (Q -- 1.0; p = 2.5) and reducing them with a = 0.8 as the optimum was being approached.

Table I shows the corresponding iterations. The point is that, like with any other method, the parame-

ters are problem dependent, and tuned values can cause dramatic improvement. The comparisons given

by many researchers showing the number of iterations for their method versus other methods is usually

simplistic. How many iterations does DOC need for this problem, 8 or 4 or 2?

In a single constraint case, the relation _ = W/C* holds, and with C* = 1 this results in

W = A for this problem. The optimality criteria are satisfied whenever D 1 : D2, and they are equal to
unity when the proper value of the multiplier is reached. Because scaling corrects for discrepancies in the

value of _, the correct optimum is obtained even without the correct value of the multiplier or of D 1
and D2, provided they are equal.

Example 3: Buckling constraint for a truss column.--A particularly simple case is used to

illustrate the use of equation (32) to optimize a structure for a buckling constraint. Figure 5 shows a 50-

member truss column and the normalized relative chord areas of the optimized structure. The continuous

curve is from reference 10 and represents the continuous change of the face sheet thickness of a sandwich
column obtained by variational methods. A good approximation of the chord areas can even be calcula-

ted by hand, if one assumes, for example, a sinusoidal eigenfunction. The data presented were obtained

by a few iterations involving eigenfunction calculations. It is a good exercise to perform the first iteration
by hand. The relative distribution of the chord areas could be scaled to satisfy the prescribed buckling

requirement.

DISCRETIZED OPTIMALITY CRITERIA FOR MULTIPLE CONSTRAINTS

Multiple constraints represent only a minor change to the recursion relations, but they introduce a

major problem for the identification of the constraint set that is active at the optimum. The multiple

constraints are usually required to be satisfied as inequality constraints or, in some cases, as equality
constraints to be enforced within physical feasibility. In the latter case the constraints in question are

declared active, but in the former case the constraints are allowed to separate into active and inactive

constraint sets, with some constraints shifting between the two sets during iterations. A thorough treat-

ment of active set strategies is beyond the scope of this paper. The problem is discussed only within the
context of the approaches that are presented for the evaluation of multiple Lagrange multipliers that no

longer can be viewed as simple scalers.

plier.
index

The Lagrangian in this case involves a sum of constraints, each weighted with a Lagrange multi-

The number of constraints is m, and the multipliers and the ci(xi) terms acquire the additional
j representing the jth constraint:

12



L(X,A)

The optimality criteria become

= E WiXi + _j CiJ -- C

i=1 j=l i=1 xi

(34)

m

wi _ c5 = 0 (k = 1,...,n) (35)
2

j=l X.
I

or

m

1 = _ Aj cij = D i (36)
2

j=l wixi

The three recursion relations, equations (18), (20), and (21), remain the same, with equation (36) replac-

ing equation (17).

For the evaluation of the Lagrange multipliers, equation (36) is rewritten in the following form:

)t 1

Cxll
--i

Xll

c21 I
--i

x21

Cnl[
--i

Xnl

+ A2

c12

x 1

c22

x 2

Cn2

x n

+ , , . -I- Am

Clm

X i

C2m

x 2

Cnm

x n

WlXl ]

w2x21

D_

WnXn I

(37)

_lC 1 + )t2C 2 + . . , + )tmC m = Wmi n

It can be noted that equation (37) is to be satisfied both "horizontally" as the optimality criteria
and also "vertically" as the constraint equations. It is coupled in both directions and requires alternating

iterations between the two sets of equations• The columns are m design vectors with WiX i as the
weighted design variable. Each vector is to add up to the required constraint, and if it falls short, it is an

obvious thought to enhance its participation by the update formulas of its multiplier presented earlier as

equations (22) and (23)• In many cases either one of these simple approaches are satisfactory.

Four observations can be made at this point• One is that the vectors associated with each con-

straint are, in general, not the optimum designs for that constraint, and one cannot use the simple

procedure of obtaining the m optimum vectors and then using them to find their optimum weighted
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sumasthe optimumfor the multipleconstraintcase.This wouldnot beequivalentto the correct dual-

programming approach. The second observation is that the simple equations (22) and (23) are uncou-

pled, and as they correct for one constraint, they modify the previous degree of satisfaction of the other

constraints. The third observation represents the good news that equations (22) and (23) automatically
tend to eliminate the consistently oversatisfied constraints. The fourth observation is the bad news that

one needs a starting value for each multiplier. Relative starting values can be estimated by considering

the constraints one at a time in the expressions at the bottom of equations (37) by using the relation

W
_J = (38)

C*
1

There are a number of approaches with essentially equivalent final algorithms that have been pro-

posed in the literature to develop coupled methods to evaluate the multipliers. In the dual-programming
concept the optimality criteria expressions are used to eliminate the design variables from the Lagrangian

in terms of the multipliers. The stationary conditions of the dual Lagrangian relative to the multipliers

then provide the conditions with the multipliers as unknowns for the constraints to be also satisfied. The

optimality criteria expressions also can be used to eliminate the design variables from the constraint

equations and to obtain a set of nonlinear equations to be solved for the multipliers. A linearization
results in the same set of linear equations as the stationary conditions in the dual-problem formulation.

The approach presented in reference 11 is the simplest way to derive the same set of equations,
which would be valid at the optimum. One can simply combine the Constraint and optimality criteria

equations by replacing the operation of the summation in the constraint equations with multiplication

with a unit vector. The unit vector is then written as a vector of the D i expressions that are equal to
unity at the optimum:

XiJm×n [wix i ]n×m

(39)

If one carries out the indicated operations, a set of m-coupled linear equations are obtained for the m
constraints:

where _:

........... = °cijcik
Ejk 3"

wix i

(40)

The formula for Eij is typical of the terms obtained by other approaches in deriving a set of equations
for the multipliers. Equation (40) also can be written in an iterative form as

14



[ j ew[Ejk][(P I)OjpO (41)

with the step-size parameter p appearing again. Equation (41) is suggested to be used instead of

equation (40).

Example: Truss-Slab Structural Tailoring Problem

The fundamental usefulness of DOC methods derives from their ability to arrive at an optimum

within a small number of iterations, each iteration requiring only a single analysis with no need to use

any additional analyses or any approximation concepts to generate sensitivities. Foremost, the number of

iterations is independent of the number of design variables when the same structure is modeled with an

increasing number of variables toward higher fidelity needed at final design stages. As a simple illustra-

tion of these points, a model generator was created to conveniently prepare the input data for truss-slabs

with an increasing number of subdivisions to result in an increasing number of independent size variables.

Figure 6 shows a set of truss-slabs with increasing numbers of members and the associated convergence
curves. The two end corners of the slab are loaded, with one corner receiving twice the load. This would

lead to twisting of the free end, but twisting was prevented by equal prescribed displacements of the two
corners to create a simple structural tailoring problem. As can be seen from the convergence curves, the

number of iterations to convergence is independent of the number of size variables, in this case, the bar

areas. The convergence in about 25 iterations probably could be "tuned" to something much less, as was
illustrated for the three-bar truss.

Generalized Optimality Criteria

The discussions up to this point have relied heavily on the concept of separability. With separa-

bility satisfied, the optimality criteria equations uncouple and become diagonal. In that case, one can

solve for the design variables and arrive at a formula similar to equation (1). However, it is advanta-

geous to make the formula more flexible by introducing the quantity Di, and to allow for flexibility in

the various step-size parameters. The use of the quantity D i also circumvents the need for solving
explicitly for the design variables and allows the possible treatment of cases where that is not possible or

not convenient. If D i can be computed in its general form,

rn OwCX) / Oxi (42)
1 = _ Aj = D i

0G(x) / 0xi

then one can attempt to use, in principle, the optimality criteria iterative concepts for nonseparable cases

also. Equation (42) requires sensitivity analyses, which are now available for most constraints. A num-
ber of researchers are now exploring these possibilities, and reference 12 is a suggested reading. It also

discusses advanced scaling procedures to augment the Lagrange multipliers toward satisfying the con-

straints. More research and experience is needed to explore the power of DOC methods under totally

general conditions and produce reliable software packages. Stress constraints are also discussed in refer-

ence 12, which uses the concepts of Prager's compliance constraint as the special case of displacement

constraints with the work of the external load system being constrained. The equivalence of such com-

pliance constraint concepts and the case of general arbitrary stress constraints have to be treated with

15



caution. In principle one always can choose an arbitrary distribution of stress allowables that has

nothing to do with the design obtained by satisfying a compliance constraint, referred to in reference 12
as a generalized stiffness constraint and discussed earlier in references 6 and 11.

Another interesting application of the displacement constraints capability is to assign a preselected

equilibrating internal load system in a statically indeterminate structure and require the resulting relative
displacements to vanish at the "cuts" as somewhat of a reversed force method. Reference 13 discusses

such applications, and reference 14 applies the concepts to optimization for stress constraints by using the
force method formulation. Reference 15 presents a brief history of the evolution of DOC methods and

also contains an extensive list of references. With the increasing need for efficient optimization capa-

bilities, hybrid approaches exploiting the best features of both the general purpose MP and special pur-
pose DOC methods should be the next area for development.

Ai

c(x)
$

C

ci(x i)

c i_cij

D i

e

J

K

L(X,2)

L i

m

mi

n

P

P

q

APPENDIX--SYMBOLS

cross-sectional area of the ith bar

constraint function

external work; required value of the constraint function

internal energy contribution of the ith variable to satisfy the constraint C*

specific internal energy contribution of the ith variable to satisfy the constraint C*

quantity that approaches unity as the optimality criteria are becoming satisfied during
iterations

small positive or negative number to modify conversions

index representing the jth constraint

system stiffness matrix

Lagrangian

length of the ith bar

number of constraints

specific mass of the ith member

number of design variables

actual load system

Step-size parameter_ocontroi the rate of the m0d_fications_=:_ i

step-size parameter that governs the modifying power of D i
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rP

rV

s.P
1

sY
1

V

W(X)

Wi(Xi)

OJ

x i

Y

yT

t_

Pi

aio

.

.

.

.

,

system displacements due to actual loads P

syste m displacements due to virtual loads V

axial member force due to the actual load system P

axial member force due to the virtual load system V

virtual load system

objective function

contribution of the ith member to the objective function

value of frequency constraint

cross-sectional property

eigenfunction

transpose of the eigenfunction

convergence modifier

Lagrange multip|ier

specific weight of the ith bar

stress allowable in the ith member
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TABLE L--EFFECT OF STEP-SIZEPARAMETERSON CONVERGENCETO FOUR

SIGNIFICANT FIGURESFORTHE TItREE-BAR TRUSS

[Sizingoption 2. Initial conditions:Al -- 1.00; A s -- 1.00; A -- 100.0.

Itera-

tions

Cross-

sectional

area of

bar 1,

A1

Cross-

sectional

area of

bar 2,

A2

Stress

in

bar 1

Objective
function,

W

D 1 D 2

0

1

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

Step-size parameters Q -- 0.50, p : 2.00, and a -- 1.00; A option 1
1. o05doo1.000000

1.309462

1.280669

1.277544

1.276401

1.276028

1.275906

1.275866

1.275853

1.275848

1.275847

1.275846

1.275846

1.275846

1.275846

1.275846

2.066130

2.320900

2.351477

2.362817

2.366544

2.367764

2.368163

2.368293

2.368336

2.368350

2.368354

2.368356

2.368356

2.368357

2.368357

70.710678

70.710678

70.71067|

70.710678

70.710678

70.710678

70.710678

70.710678

70.710678

70.710678

70.710678

70.710678

70.710678

70.710678

70.710678

110.000000

151.607531

151.275889

151.269153

151.268292

151.268199

151.268189

151.268188

151.268188

151.268188

151.268188

151.268188

151.268188

151.268188

151.268188

151.268188

100.000000

265.934614

139.628364

151.019925

151.267328

151.268107

151.268180

151.268187

151.268188

151.268188

151.268188

151.268188

151.268188

151.268188

151.268188

151.268188

1.171573

1.699445

0.918398

0.996577

0.999409

0.999808

0.999937

4.999980

0.999993

0.999998

0.999999

1.000000

1.000000

1.000000

1.000000

1.000000

2.426467

2.100485

0.948426

1.008001

1.003150

1.001031

1.000337

1.000110

1.000036

1.000012

1.000004

1.000001

1.000000

1.000000

1.000000

1.000000

Step-size parameters Q = 0.70, p = 2.20, and a = 1.02: A option 2
0

1

2

3

4

5

6

7

8

9

i0

11

12

13

14

15

1.000000

1.282247

1.275093

1.275771

1.275850

1.275846

1.275846

1.275846

1.275846

1.275846

1.275846

1.275846

1.275846

1.275846

1.275846

1.275846

1.000000

2.305701

2.375911

2.369110

2.368315

2.368358

2.368357

2.368357

2.368357

2.368357

2.368357

2.368357

2.368357

2.368357

2.368357

2.368357

70.710678

70.710678

70.710678

70.710678

70.710678

70.710678

70.710678

70.710678

70.710678

70.710678

70.710678

70.710678

70.710678

70.710678

70.710678

Step-raze parameters

no:ooo0oo
151.281676

151.268380

151.268190

151.268188

151.268188

151.268188

151.268188

151.268188

151.268188

151.268188

151.268188

151.268188

151.268188

151.268188

151.268188

I00.000000

284.003540

105.712326

175.421554

139.599526

157.860942

147.548082

153.561249

149.812918

152.253776

150.574835

151.783467

150.869600

151.592146

150.994202

15_.510838

1.171573

1.864957

0.699397

1.159765

0.922857

1.043583

0.975407

1.015159

0.990380

1.006516

0.995416

1.003406

0.997365

1.002142

0.998189

1.001604

Q= 1.00, p--2.50, and a--0.80;A option 1

2.426407

1.946046

0.695849

1.159174

0.922883

1.043583

0.975407

1.015159

0.990380

1.006516

0.995416

1.003406

0.997365

1.002142

0.998189

1.001604

5

6

7

8

9

10

11

12

13

14

15

0 1.000000

1 1.273034

2 1.275796

3 1.275828

4 1.275838

1.275842

1.275843

1.275844

1.275845

1.275845

1.275845

1.275845

1.275845

1.275845

1.275845

1.275845

1.000000

2.396751

2.368857

2.368538

2.368438

2.368402

2.368386

2.368378

2.368373

2.368370

2.368368

2.368367

2.368366

2.368365

2.368365

2.368364

70.710678

70.710678

70.710678

70.710678

70.710678

70.710678

70.710678

70.710678

70.710678

70.710678

70.710678

70.710678

70.710678

70.710678

70.710678

110.000000

151.270881

151.268189

151.268188

151.268188

151.268188

151.268188

151.268188

151.268188

151.268188

151.268188

151.268188

151.268188

151.268188

151.268188

151.268188

i00.000000

229.107461

129.649103

150.929298

151.206677

151.246980

151.258099

151.262330

151.264296

151.265341

151.265952

151.266336

151.266591

151.266766

151.266892

151.266983

1.171573

1.519095

0.857126

0.997779

0.999602

0.999865

0.999936

0.999964

0.999976

0.999983

0.999986

0.999989

0.999990

0.999992

0.999992

0.999993

2.426407

1.490414

0.856838

0.997657

0.999547

0.999834

0.999917

0.999949

0.999965

0.999974

0.999979

0.999982

0.999984

0.999986

0.999987

0.999988

19



I

Figure 2.--Isometric view of wing finite
element model for forward-swept
wing preliminary design.
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Figure 5.--Optlmum chord areas of 50-bar truss column.
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